P-orderings: a metric viewpoint and the non-existence of simultaneous orderings
نویسندگان
چکیده
منابع مشابه
Remarks on P-orderings and simultaneous orderings (Preprint)
1 Preliminary definitions Definition 1 (S-Lenstra constant) Let K be a number field, and Z K its ring of integers. Let S be a finite set of valuations of K containing all the infinite valuations. Let L be a maximal subset of Z K such that x, y ∈ L ⇒ x − y ∈ Z if L = {a 0 , a 1 ,. .. , a k }. In fact we will use this second form of the condition. Remark 2 We can assume that if L is such a maxima...
متن کاملSynthesis of Induction Orderings for Existence Proofs
In the eld of program synthesis inductive existence proofs are used to compute algorithmic deenitions for the skolem functions under consideration. While in general the recursion orderings of the given function deenitions form the induction ordering this approach often fail for existence proofs. In many cases a completely new induction ordering has to be invented to prove an existence formula. ...
متن کاملSubsets of Z with Simultaneous Orderings
We are interested in subsets S of Z which admit simultaneous orderings, that is, sequences {an}n≥0 such that Qn−1 k=0 (an−ak) divides Qn−1 k=0 (x− ak) for every x ∈ S (analogously to n! which divides (m+n)!/m! for every m). In particular, we characterize the polynomials f of degree 2 such that f(N) admits a simultaneous ordering.
متن کاملOn the Existence of Extremal Cones and Comparative Probability Orderings
We study the recently discovered phenomenon [1] of existence of comparative probability orderings on finite sets that violate Fishburn hypothesis [2, 3] — we call such orderings and the discrete cones associated with them extremal. Conder and Slinko constructed an extremal discrete cone on the set of n = 7 elements and showed that no extremal cones exist on the set of n ≤ 6 elements. In this pa...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2003
ISSN: 0022-314X
DOI: 10.1016/s0022-314x(02)00056-2